Regularity of Solutions to the Dirichlet Problem for Monge-ampère Equations

نویسندگان

  • MOHAMAD CHARABATI
  • H. H. Pham
چکیده

We study Hölder continuity of solutions to the Dirichlet problem for measures having density in L, p > 1, with respect to Hausdorff-Riesz measures of order 2n− 2 + ǫ for 0 < ǫ ≤ 2, in a bounded strongly hyperconvex Lipschitz domain and the boundary data belongs to C(∂Ω), 0 < α ≤

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary regularity for the Monge-Ampère and affine maximal surface equations

In this paper, we prove global second derivative estimates for solutions of the Dirichlet problem for the Monge-Ampère equation when the inhomogeneous term is only assumed to be Hölder continuous. As a consequence of our approach, we also establish the existence and uniqueness of globally smooth solutions to the second boundary value problem for the affine maximal surface equation and affine me...

متن کامل

The Dirichlet Problem for Monge-ampère Equations in Non-convex Domains and Spacelike Hypersurfaces of Constant Gauss Curvature

In this paper we extend the well known results on the existence and regularity of solutions of the Dirichlet problem for Monge-Ampère equations in a strictly convex domain to an arbitrary smooth bounded domain in Rn as well as in a general Riemannian manifold. We prove for the nondegenerate case that a sufficient (and necessary) condition for the classical solvability is the existence of a subs...

متن کامل

Regularity and Boundary Behavior of Solutions to Complex Monge–ampère Equations

1. Background 5 2. Plurisubharmonic functions 8 3. The complex Monge–Ampère operator 10 3.1. Bedford’s and Taylor’s definition of the complex Monge–Ampère operator 11 3.2. Cegrell’s definition of the complex Monge–Ampère operator 12 4. The Dirichlet problem for the complex Monge–Ampère operator 14 4.1. Boundary blow-up problems for the complex Monge–Ampère operator 17 4.2. Comparison principles...

متن کامل

The Dirichlet Problem for Complex Monge-ampère Equations and Regularity of the Pluri-complex Green Function

(1.1) det(uzj z̄k) = ψ(z, u,∇u) in Ω, u = φ on ∂Ω and related questions. When Ω is a strongly pseudoconvex domain, this problem has received extensive study. In [4]-[6], E. Bedford and B. A. Taylor established the existence, uniqueness and global Lipschitz regularity of generalized pluri-subharmonic solutions. S.-Y. Cheng and S.-T. Yau [8], in their work on complete Kähler-Einstein metrics on no...

متن کامل

Boundary Regularity for Solutions to the Linearized Monge-ampère Equations

We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016